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SUMMARY

The results of experiments to determine the longitudinal dynamic stability
characteristics of a quad configuration, ducted-propeller V/STOL aircraft
at four low-speed/high-duct-:lnc:ldence trim conditions (id = 80° , 70°,

60° , and 50°) are presented. Longitudinal transient responses in
various degrees of freedom were measured using a dynamic model on the
Princeton Dynamic Model Track. The data presented include time histories
of the model motions in various longitudinal degrees of freedom that occur
when the model is disturbed from trimmed flight. Responses are presented
both with and without pitch rate feedback.

The dynamic model employed in these experiments is a generalized research
model arranged to represent closely the Bell X-22A V/STOL aircraft,

The data presented in this report comprise the second phase of a three-
phase investigation of the dynamic stability characteristics of a quad
configuration, ducted-propeller V/STOL aircraft at low speeds and high
duct incidences. The other two phases pertain to the lateral and longi-
tudinal hovering stability characteristics, presented in Reference 1, and
the lateral/directional characteristics at the same trim conditions as
presented here.
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INTRODUCTION

A series of experiments to determine the longitudinal dynamic stability
characteristics of a quad configuration, ducted-propeller V/STOL aircraft
at low speeds and high duct incidences were conducted on the Princeton
Dynamic Model Track. The data presented in this report from Phase II of a
three-part investigation, consist of measurement of the longitudinal
transient response characteristics of a dy.amic model at four low-.;peed
trim conditions in transition flight. Reference 1 presents experimental
data from Phase I, an investigation of the hovering stability character-
istics, and a succeeding report will present data from Phase III, concerned
with the lateral/directional dynamics at the same trim conditions as those
of Phase II.

The dynami: model employed in these tests i1s shown in Figure 1. The model,
described in Reference 2, was designed as a general research model with
variable geometry and lifting system configuration such that a variety of
quad V/STOL designs could be simulated. In the configuration selected for
the tests described here, the model closely resembles a 0.1L45-scale dy-
namic model of the Bell X-22A V/STOL research aircraft. The model differs
from actual aircraft (as given in Reference 3) in certain minor details
which are described in the section entitled Description of Apparatus under
Model.

The test program consisted of measurement of the transient response charac-
teristics of the dynemic model in various longitudinal degrees of freedom
when disturbed from trimmed level flight. One of the features of the
Princeton Dynamic Model Track (described in detail in Reference U4) is the
ability to use the servo carriage to restrict the degrees of freedom of
the model such that response measurements can be conducted in various
combinations of degrees of freedom as well as the three-degree-of-freedom
longitudinal motion. These restricted degree-of-freedom tests greatly
assist in the analysis of the data for stability derivatives of the
vehicle, Therefore, response measurements in this investigation included
three-degree-of-freedom experiments (pitch angle/horizontal velocity/
vertical velocity), two-degree-of-freedom measurements (pitch angle
horizontal velocity and pitch angle/vertical velocity), and single-degree-
of-freedom measurements (pitch angle only). The single-degree-of-freedom
measurements are particularly useful for a direct determination of the
angular damping of the vehicle.

In addition to the time histories of the basic model, data were taken with
various levels of pitch rate feedback. Differential propeller blade angle
on the fore-and~aft ducts proportional to the angular velocity of the
model in pitch was used where noted in the data. Transient response
measurements with stability augmentation are valuable for determination of
the stability derivatives of the model. This is particularly true when
the basic model is markedly unstable. A longer time history can be
obtained in the augmented case, permitting more accurate determination of
the transient characterlistics. The test conditions covered are given in

A



Table I.

All data are presented in model scale and may be interpreted in terms of
the full-scale vehicle, (which the model closely resembles) using the
conversion factors given in Table II.




DESCRIPTION OF APPARATUS

TEST FACILITY

The Princeton University Dynamic Model Trauck is a facility designed ex-
pressly for the study of the dynamic motions of helicopter and V/STOL
models at equivalent flight speeds of up to 60 knots (for a one-tenth
scale model). Basic components of the facility include a servo-driven
carriage riding on a track 750 feet long, located in a building with a
cross section of 30 by 30 feet; the carriage has an acceleration potential
of 0.6g and a maximum speed of 4O feet per second. A detailed description
of the facility and the testing techniques employed may be found in
Reference L,

A model can be attached to the carriage by one of several booms. The
mount used to conduct longitudinal investigations is shown in Figure 1.
This mount permits relative displacements of the model with respect to the
carriage in horizontal and vertical directions. The model is supported on
a three-axis gimbal system that allows selection of any or all of the <
three angular degrees of freedom. Horizontal relative motion of the model
with respect to the carriage is sensed and used to command the carriage to
follow the model in a closed-loop fashion, Similarly, vertical displace-
ment of the model with respect to the carriage commands the boom to move
vertically. This servo operation of the carriage allows the model to fly
"free", with no restraints on the dynamic motions being investigated.

This method of testing may be considered to be similar to dynamic flight
testing, but considerably more control over the experiment is possible.

The dynamic tests conducted during this program included one-, two-, and
three-degree-of-freedom motion measurements. The model was mounted as
shown in Figure 1. The transient behavior of the model was dominated in
general by an unstable oscillation, except at the lowest duct incidence
investigated (id = 50° ), so only in this latter case were predetermined

control inputs used to excite the model motions.
MODEL

A photograph of the model is shown in Figure 2, and a three-view drawing
is presented in Figure 3. The model's pertinent dimensions and inertia
characteristics are listed in Table III and the model Reference Stations
are defined and compared with full-scale X-22A Reference Stations in -
Figure 4. The model was designed as a general research model for investi-
gation of the dynamic stability characteristics of various quad configu-
ration V/STOL aircraft as described in Reference 2; however, the configu-
ration selected for these tests matched as closely as possible the Bell
X-22A configuration,

This dynamic model is powered by a 200-volt, 400O-cycle, 3-phase electric
motor. The motor drives the four ducted propellers through a central




transmission and various right-angle gearboxes. The aerodynamic shape of
the model is obtained through the use of a Fiberglas skin with Styrofoam
stiffeners. The propeller blades are made with a plastic foam core and
Fiberglas skin. The geometric characteristics of the propeller are shown
in Figure 5, and the duct geometry is shown in Figure 6. The duct shape
is identical tvo that of the Bell X-22A aircraft.

Model control positions are set from a control console on the carriage.
The blade pitch angles on each of the four propellers are electrically
controllable. Also, the deflection angles of the elevons are electrically
controllable, All of these control systems are closed-loop position
controls and are used as such in the portions of the experiments involving
feedback to alter the transient motions of the model. The dynamic charac-
teristics of these feedback loops are such that the time response of the
controls is negligible in the frequency range of interest. Although the
control servo loops are nonlinear, using polarized relays for power ampli-
fication, they can be characterized as having a closed-loop natural

; frequency of approximately 10 cycles per second with a damping ratio of
approximately seven-tenths., The servo gear ratios were selected so that
the rate limits arising from the rpm limitations of the control drive
motors were equal to or greater than scaled rate limits determined from
full-~-scale Bell X-22A values.

This research model differs from the Bell X-22A in the following
f particulars:

1. The elevon on the model differs from that on the full-scale
i aircraft. The model elevon has no movable surface forward of the
hinge line, and its hinge line is located below the trailing edge
of the duct as shown in Figure 7. While these differences would
affect the control effectiveness and the control loads, they
would not be expected to have any significant effect on the dy-
namic motions.

2. The duct rotation point is at a different location on the model
(84 percent c) than on the full-scale ajrcraft (55 percent c).

With the ducts at 90 degrees incidence, the propeller hubs are
in the same relative position on the model as on the full-scale
aircraft. The center of gravity of the model is higher (by 1.2
percent c¢) on the model with respect to the propeller hubs than
on the full-scale aircraft.

3. For the tests at duct incidences of 80 degrees and 70 degrees
the vertical tail on the model was smaller than on the full-scale
vehicle as shown in Figure 3. At duct incidences of 60 degrees
and 50 degrees, the model vertical tail was the larger scaled
size as indicated on the same figure.

This model was planned as a general research model; numerous other qued
configuration layouts can be simulated through the use of interchangeable
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parts as described in Reference 2. No attempt was made in the design
stage to simulate the X-22A precisely. However, the modifications above

will not result in appreciable differences in the model dynamic stability
characteristics.




EXPERIMENTAL RESULTS AND DISCUSSION

The experimentally determined trim conditions are shown in Figure 8 as
graphs of trim velocity Uf and average propeller pitch B,,sx as a function

of duct incidence. The elevons were set at zero deflection angle for all
tests. All experiments were conducted with a model weight of S51.5 pounds,
corresponding to a full-scale vehicle gross weight of 16,700 pounds. Due
to the large pitching moments developed by the mcdel in some of the flight
conditions encountered, it was considered to be desirable to move the
center of gravity of the model as indicated in Table III, such that ex-
cessive levels of differential propeller blade angle (differential
collective pitch) would not be required for trim. The differential
collective pitch ABO required for trim is given in Table I.

Transient response characteristics are presented about a space-fixed axis
system as shown in Figure 9 and further discussed in Appendix I. Time
histories of the longitudinal transient responses of the quad configuration
V/STOL aircraft model from the level flight trim conditions at four duct
incidences (id = 80°, 70°, 60°, and 50°) are presented in Figuras 10
through 37.

The responses shown include one-, two-, and three-degree-of-freedom time
histories as discussed previously. The single-degree-of-freedom responses
are presented to permit a direct determination of the angular damping
characteristics of the model. These runs are presented in Figures 10, 17,
29, and gh. With the exception of the runs presented in Figure 3k

(id = 50" ), mechanical springs have been added tc the model to provide a

restoring moment about the model pitch axis such that the single-degree-
of-freedom motions will be oscillatory. In this way the time histories
are more readily analyzed for angular damging derivatives., Mechanical
springs were not necessary in the id = 50" case since sufficient aerody-

namic spring M, was present to make the response oscillatory. The angular

spring constant and the inertia of the model are given in Table III. Data
are pregsented with the model motor off and the rpm equal to zero so that
the mechanical damping of the model mounting system may be determined.
This damping, due to friction, should be subtractea from the damping
measured with the model running to determine the aerodynamic damping. It
may be noted that the mechanical damping is very small compared to the
total damping with the model running.

These data include runs showing the transient motion of the basic model as
well as the transient motion with various levels of rate feedback. As
mentioned earlier, the dynamic characteristics of the model control system
are such that the control system transfer function may be considered to be
equal to unity over the frequency range of interest here.

The general trend of the stability characteristics measured is to show a
transient response in three degrees of freedom that is dominated by an

6




unstable oscillation. The instability becomes less severe us the duct
incidence is reduced, ultimately becoming stable at a duct ircidence of

50 degrees. At the lowest duct incidence, cortrol inputs were used to
excite the transient motion of the model. At the other three duct inci-
dences tested, the model motions were self-excited. In this way a maximum
length time history is obtained.




A1 103 11T s1aer 995 “30a7d 3w Bo TaPON,
*938x Butads X003 III 97Qel 983 °Butads TBOTUBYO3W QITM PIUTBI}SSI WOPIIIJ By
9T MWM auou m:-mbum TT
089 8°1 L°E2
ST 806 auou .w=aﬂ Tt
. J
L1 €98 090°0 n-g 18
. 3
€T 298 M0°0 D-J 198
%o : 08.9 6°1 262 08
T 0£0°0 In- 181
hsg
TT 4 auou - 8
12/1°) @
9821 auou *L T
Ol py L
2821 suou e, o 0
(oe8) (o98/33) (wdx) €:519) (%sp) (Fsp)
-@M .HOD Oﬂq vge' Q Uﬂ
wmopeedd qoltd qo31d
*SON | °soN | uorjzwjusuPny Jo L310018A paads SAT3O9TTOD JatTedoag aouapTouUl
‘B4 | uny £3711Q93S s9a18aq wyag JeTTedoad | TeTIURIaITIq afeaany jong
("epn3tyTe samssaad 33-002h © 39 BulATJ aTeds TINWJ QT 008°4T 03 JusTeAInba 81 syul) |
E

QT S°TS = WITaAM = JJTT TOPOW 3¥ PIjONPuod §389%3 TV

SNOLLIGNOD LSdL J0O XYVWWNS

‘I THEVL




g2 086 0£0°0 Im-3n-g
L2 786 L20°0 In-dn-g
92 g6 120°0 In-In-g
¢e 066 auou Iu-dn-¢
G66 J
he auou M-g
66
€2 556 090°0 ’n-¢
22 156 78700 Jn-g
22 08l o 2 92 oL
T2 0% 0£0°0 In-g <2 2 2
oz 19% L20°0 In-¢
696 J
6T T120°0 n-¢
896
£E6 iz
81 auou n-
€6
-touop| §42T suou 8 22 08.L9
IR 0l2T 5 . .
n g e 2° 62
alat
% auou .8 0 0
LT 1.2t e _
(o°%]) ﬁoom\amv (od) (%9p) (Z9p) Awwvv
3
.@M OD Omﬂ ¢mb.m UH
WwopaaLy Yo3td uo31d
*SoON *SoN |uot3swiusuBdny Jo A3100TaA paadg SAT309TTOD JaTtadoag aouapIOUI
*314 uny | A3TTIgE3S seaadaq| w4l 1aTTadorg | TeTUSIRIITIA aBeIaay 3ong
(*epPn313Te eamssaad 33-002h ® 38 BUTATI 2TEdS T QT 008°HT O3 JUSTBATDS ST STUL)
QT S°TS = 3UBTaM = 3JTT TSPOW 38 PIJONPUOD S§3§233 TTY
panutjuo) - I FIEVL

e i




‘wopasaJ g ut Burads [eOTUBYDSIW ON

k.= =
60TT
LE suou Iu-Ip- o
G011
- 3
¢ 21Tt auou M-
2 ¥ 9 08L9 g2 £s2 05
43 HROT auou n-9
o PANAN — o
ofet
S auou Im-In-g
NM m@OH UOU ..H?l 2}
290T
p: 82 0849 1°2 62 09
1€ PASON L20°0 n-e
LOT
0% o auou ,wbu 0
GHOT
ogel auou ;) ge 08L9
62 T4 G°¢e2
9.L21 auou wex 0 0 0
ﬁmwmw (035/33) (oY) AJWdu €£1) (33P)
% o gv veLt g Py
wopaald yo3td uo3td
*SoN | *soN uotjBjUSWENY Jo L3100TaA paads SAT3O9TTOD za1Tedoag 30uapToUx
*B1g | uny £31TTIqR3S | seaadaq Wi, x97Tedoad | TeT3UaIaIT(Q aBeaaAy jong

(°aPn313Te aamssaxd 33-002h ® 38 FUTATI 97828 TINJ QT 00g°HT O3 JuaTeAnba st SIYL)
FFTT TSPOW 3® Pajonpuod 3833 TV

QT G°TS = UBTom =

psnurjuo) - I TIMEVL

10

.




Bk e et

a4 e o ooy

TABLE II. SCALE FACTORS FOR DYNAMIC MODEL SIMILARITY

Multiply full-scale property by scale factor to obtain model property.

For A\, = 0.1453

Linear dimensior
Area

Volume, mass, force
Moment

Moment of inertia
Linear velocity
Linear acceleration
Angular velocity
Angular acceleration
Time

Frequency

Reynolds number

Mach number

where X

model linear dimension

0.1453

2.112 x 10~°
3.071 x 10°°
L.463 x 10°*
6.487 x 10°°
0.3812

1.000

2.623

0.1453

0.3812

2.623

5.541 x 10~2

0.3812

full-scale linear dimension

11
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Figure 1. Photograph of Princeton Dynamic Model Track Showing Model
Mounted on Longitudinal Dynamic Testing Apparatus.
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APPENDIX
EQUATIONS OF MOTION

Linearized equations of motion, applicable to the analysis cf various ex-
perimentally measured responses, are presented in this appendix.

The longitudinal equations of motion that describe the small perturbtation
motion of an aircraft from initially level flight, using a stubility exis
system (Reference 5) are:

&-xuu-xww+ge =0
W Zw-Zu-Uf=0
Mww+%&+muu+méé-'e'=o (1)

Two derivatives Xé and Zé that are usually small are neglected.

Since all of the transient responses were measured, and are presented in
terms of space-fixed variables, it is convenient to transform equations
(1) to a space-fixed system, (Figure 38) with the X, axis parallel to the

horizon, by the following transformations:

wW=w_,+U 8 (2)

where wof is equal to zerc frcm the condition of initially level flight,

Substituting relationships (2) into equations (1), the following equations
result:

Up - qu - waf + (g - Xon )8 =0

f
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Because of certain features of the model and the apparatus, three modifi-
cations to these equations are necessary such that they will apply to all
test conditions,

1.

There are two linkages required to attach the model to the servo
transducers and mcounting system used for this type of testing.
These supports provide the horizontal and vert.cal translational

degrees of freedom and contribute additional masses m, and m,

that "fly" along with the model and therefore, also must be
accelerated by the model. The two linkages are relatively small
in weight compared to the "flying" weight of the model but never-
theless should be accounted for by additional mass terms in the
equations of motion., Generally, the arrangement and weights cf
these two supports are such that the mass accclerated by the
model in the horizontal direction is larger than that accelerated
in the vertical direction., If mp is the total mass of the

model resting on the pivot axis (Figure 39), then the total
lifted mass of the model m when "flying" is equal to m, plus

the mass of the vertical link m, or m = mp tm,. Similarly,
the total accelerated mass in the horizontal direction (mt) is

equal to mp + m, h m, or m it m . This dynamic model-mount

characteristic requires the mcdification of ail terms in the hori-
zontal force equation, except the acceleration term, by a mass
ratio defined as m/m+ and equal to 0.936 in value.

In certain of the test conditions as indicated in Table III, the
center of gravity of the model was not located at the pivot axis
of the model. Equations (3) may be considered to be written
about the pitch pivot axis of the model, which represents the
full-scale center-of-gravity position about which the derivatives
are determined. Additional terms are necessary in the equations
of motion to account for the displacement of the moael center of
gravity. ThLese are:

Z
AMﬁ - - _S%:EE
cg Y
X m
AM‘.’ = _cu
Cg Iy
W. 2
oMy = - _RE_SE (4)
cg Y
where and W_ are respectively the pivoting mass and
pivoting weight of the model.
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3. In certain of the tests (single degree of freedom only) a
mechanical spring was added about the model pitch =sxis to provide
a restoring moment which produces an oscillatory motion of the
modei. In these experiments the following term should be added:

Kg

My = - == (5)

' Y

In the experiments where a spring was employed, the value of the
spring constant, k., , 1is given in Table IIT.

m

tdding the necessary terms to account for these three effects, the com-
plete equations of motion that apply to the measured transients obtained
in this facility are:

. m m m
U, - — Xu, - — Xw,+—(g-XU_ )68
it mt u f mt w f mt W of

1}
O

. . (ke W oz,

6 - (M +MU VO +l—S0-MU + "p ‘ce 6 + Tp Zcg VRS
M

Wo. I, W0, I,

X
sl + BSEN e -
<Mw + Iy ) We = Mw. =0 (6)

For the restricted degree of freedom tests, then the following reduced
sets of equations apply.

1. In two degrees of freedom, with ke = 0
m
a6l Ul (wf = 0)
e o - b e =
Yr T om quf * mn (e wao it v

f
W z, m. oz,
+_P__59+_R__EQ-MQ :O (7)
I 1 f u t
Y Y
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2.

b. 6, v (uf = 0)

wf - waf - Zonf 0 =0

8 - (M. +M:U. )6 - MU 8
0 My 0p My 0p

W zc m xC .
+.P._SIy e-M‘.,+.R_SIy Vo - M. =0 (8)

In the single-degree-of-freedom experiments, with the mechanical
spring and u_, = 0, w_, = 0O, the equation that applies is:

f f
. . ke W,z
6 - (Mg + M&Uof) 6 + ii? - Monf +.l%§EB 8 =0 (9)

In the experiments where feedback is used, a term MABP 8By e
1TCH

should be added to the right hand side of the pitching moment
equation and then the equation governing 4B is:

AR = K. © (10)

PITCH

By substitution of these expressions into the pitching moment
equation, an effective pitch damping is obtained:

Mé =%t Ke MABPITCH (11)
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